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Abstract

In this paper, Berenger s perfectly matched hyer (PM L) absoibing boundary condition for electromagnetic wavesisin

troduced as the truncation area of the computational domain to absorb one dimensional acoustic wave for the scheme of acoustical wave

propagator (AWP). To guarantee the efficiency of the AWP algonthm. a regulated propagator matrix is denved in the PM L m edium.

Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustrate the efficiency of the com-

bination of PM L and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high

computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the

PML configurations are also discussed.

Keywords:

Recently, the acoustical wave propagator scheme
which investigates the propagation and scattering of
acoustic waves has been developed[ " and extended by
many researchers > 7 . This technique involves an ef-
fective time-domain calculation of sound propagation
using the combination of Chebyshev polynomial and
the Fourier pseudo-spectral method, which allows ef-
fective and accurate prediction of wave packet evolu-
tion with large time steps. However, as a method of
numerically simulating acoustic wave propagation, ar-
tificial boundaries must be introduced into the AWP
(acoustical wave propagator) to limit the area of com-
putation. To eliminate the spurious reflections pro-
duced by these artificial boundaries, absorbing bound-
ary conditions are needed. The traditional approach of
the AWP uses the technique of smoothing truncation
windows to smooth the outer-going waves at the
boundary, which is not optimal enough for higher
computational accuracy. The computational edges

should be properly considered for the AWP.

The perfectly matched layer is currently a popu-
lar absorbing boundary condition for numerical model-
ing of electromagnetic, acoustic and elastic wave

problems, which was first introduced by Berenger for

acoustical wave propagator, perfectly matched layer. absorbing boundary conditions (ABC).

. [6—
electromagnetic w aves

8 . It is based on the use of
an absorbing layer especially designed to absorb with-
out reflection the electromagnetic waves. In that ap-
proach, a PML (perfectly matched layer) medium of
a certain depth is introduced in a region adjacent to
the artificial boundary of a computational domain.
After careful design of the parameter, the impedance
of the PM L. as proved by Berenger! ™, is the same as
that of the interior lossless medium and then the in-
terface between the physical domain and the absorb-
ing layer does not produce spurious reflections inside
the domain of interest. Consequently, the PML pro-
vides an ideal ABC for the truncation of the computa-
tional domain in numerical methods such as the finite-
difference, finite-element, and pseudo-spectral time-
domain methodd* ' .

In this paper, the AWP algorithm in conjunction
with the PML technique (PML-AWP) is considered
for one-dimensional case studies of acoustical wave
propagation. The proper general AWP matrix is de-
rived in the PM L. medium and the optimal parameter
of the PM L is also discussed. Simulation results veri-
fy that the proposed method leads to more accurate
computational result than that of the traditional
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smoothing truncation windows of original AWP, es-
pecially in the vicinity of the computational bound-
aries. In this paper, we combine the AWP algorithm
with the PM L technique and derive a regulated prop-
agator matrix. Several illustrating examples are pre-

sented to illustrate the efficiency of the PM L-AWP.

1 Some theories of the acoustical wave prop-
agator

1.1 Theory and implementation of acoustical wave
prop a.gator[ !

The technique of AWP is based on the coupled
first-order linear acoustic propagation equations

0 ov (x, 1)

o7 =—Vpx, t)
pcz at VX,

where v (x, ¢) represents the acoustic particle veloci-
tys p (x, t) is the acoustic pressure fluctuation, O is
the density of the medium, and c is the sound speed.

On the other hand, the linear acoustical wave e-
quation mentioned above can be described by

a%q)(x, O —— HOCx, 1) o)

where x denotes the spatial coordinates, P(x, ¢) is
the state vectors and H is a spatial derivative opera-
tor. For one-dimensional acoustical wave equation,
@ (x, ¢) can be represented as the sound pressure

p(x, t) and the particle velocity v (x, ¢)

D(x, 1) = [1’("’ ’ﬂ 3)
V(x,t
Then
0 oc? aﬁ
H= o @
1 o 0
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Integrating Eq. (2) with respect to time, we can ob-
tain

O, D= " T D(x, 1) (5)
In this way, the state vector at any time ¢ can be e-
valuated by the operation of the acoustical wave prop-

(t—t)H . c
agator e 0" acting upon the initial state vector

® (x, t0). The characteristics of the media can be in-

cluded in the AWP matrix H.

For the convenience of the calculation, the AWP
matrix needs to be normalized by'?

r  H
H——lm (6)

where | A max 15 the maximum eigenvalue of the

AWP matrix. Denote R = (¢— t0)| Al maxs then the
acoustical wave propagator can be expanded by
Chebyshev polynomials of the first kind as

e TWH— R N (ROT,(H ()
n=0

where a, (R)=2J,(R) except for ag(R)=J,(R)
andJ, (R ) is the nth-order Bessel function of the
first kind. The zero- and first-order Chebyshev poly-
nomials are defined as To(H )=1 and T, (H )=
H', and the rest can be calculated by the following
recursive relations

T, (H)=20T,(H)+ T, ,(H) (8
Eq. (5) then becomes

D(x, )=e " Ty, 1)

= >4, (ROT,(H)®(x, 1) (9)
n=20

The spatial derivatives within the AWP matrix H are
calculated by the spectral method as
aa,, Wx. )= F LGOF[ 9 )]} (10)
X

where F[] and Fﬁl[] represent the Fourier trans-

form and the inverse Fourier transform, respectively,
and k is the wave number.

The acoustical wave propagator combines the
spectral method in frequency-domain with the Cheby-
shev polynomial expansion in time-domain. As a re-
sult it is a highly efficient calculation technique for
calculallting the time-domain evolution of the acoustical

wave

1.2 Gaussian smoothing truncation windows in the
AWP

In the original AWP, the truncation of the com-
putational domain is simulated by introducing a Gaus-
sian truncation function in the vicinity of the compu-
tational edges. In one-dimensional case, the computa-
tional domain is set as [ x1, x2] and xo—x1=L . For
an N-gird-point Fourier pseudo-spectral method used
in AWP, in order to minimize reflections from the
truncated boundary, a truncated window of length m

is implemented at the edges of x= x| and x=x7 as

O n:()’l? 7miland
S A n=N—m,N—m-T+I1, -
wd(n > A) N—1
1 n=mym—+1 - N—m—1

an

where A is the spatial sample, interval, To remove the
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discontinuity at x= (m —1)°Aand x=(N—m)°
A a Gaussian function G (x) is applied to convolve
with the window function Wd (n°L) as

— G0l

Wd(x)=F "(F[ Wd(x)]F[e 1
a2
where x=n A and b controls the effective width of
the Gaussian function.

In the original AWP, the Gaussian truncation
windows mentioned above are used as the absorbing
boundary to absorb the outgoing wave when it arrives
at the computational edges. However, the truncation
window length should be large enough to guarantee
the calculation precision, which leads to a heavy com-
putational burden. Furthermore, for higher dimen-
sional AWP, the reflection of the computational edge
becomes increasingly obvious and the simple trunca-
tion windows cannot absorb the out-going waves ef-
fectively.

2 Acoustical wave propagator in a PML
medium

2.1 PML technique for the acoustical wave propa-
gator

The perfectly matched layer is realized from the
physical absorption of the incident numerical wave by
means of a lossy medium. This is devised using a nov-
el split-field formulation of Maxwell’ s equations
where each vector field component is split into two or

three orthogonal components[ The novelty of
this technique lies in the way through which the layer
equations are constructed. However, for one-dimen-
sional acoustical wave, only one component exists in
the layer equations. Thus, for all real acoustical me-
dia and for the purposes of equation symmetry of the
original PML form, we only need to introduce two
damping coefficients and correspondingly the first
order acoustic equations in a one-dimensional homoge-

. 9 12
neous medium should be * 2

d
Vp(x, t) =— Pa—tv(x, t)—a vix, t)

. __ 1 o _
Vewlx, 1) = o2 o (x, ) — ap(x, 1)
a3

where v (x, t) is the acoustic particle velocity,
p(x, t) is the acoustic pressure fluctuation, P is the
density of the medium, and c is the sound speed of
the medium. Two attenuation coefficients @ and a
are introduced as damping terms. As a result, -they

are included here since the PM L. method relies on the
introduction of nonphysical density attenuation in the
absotbing layers. Toimplement the PM L in the tech-
nigque of AWP, Eq. (13) can be reformed as

o
o (x, t) =— Pczap(x, D=0V vix, )

(6]
v, z>:—ipvp<x, D= v 0

14)
For one-dimensional case, define a state vector for

sound field P= [igi’ ;;] , then Eq. (14) can be

simplified as

2@ _
or HO (15)
w here
o a 0V
H=| o (16)
P v P

Eq. (15) indicates the acoustical wave propagator e-
quations for the sound field in a PM L. medium, w hose
operation matrix is H. The theory of PM ' indi-
cates that if

*

ot a = an

g
then the lossy PM L medium causes unreflective trans-
mission of acoustical wave propagating normally
across the interface between the lossless acoustical

medium (with q*: a=0) and the PML medium
(with o¢" a= “77&0).

Substituting Eq. (17) into Eq. (16), the AWP

matrix becomes

5 0’V
H=|1, 5 (18>

0

*

where 8= 0c”a= a_.

0 Eq. (18) indicates that the
regulated AWP in the PM L medium and the original

AWP in the lossless medium can be unified in terms
of the change of the damping coefficients in one-di-
mensional case. It should be noted here that the ex-
tension of the scheme to two-dimensional case and
three-dimensional case will be straightforward. For
example, for two-dimensional calculation, following
Berengelrl o, the pressure and velocity can be expand-
edas p=p,+p,and v=v, 1+ v, and the attenua-
tion parameters Q and § are introduced to rewrite
the PML pressure-velocity Eq. (14). It should be
noted here that, while v, and v, are the physical
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components of velocitys p,, p, and Q, q have no
physical meanings. Following the similar deduction
process as the one-dimensional case, the state vector
for two-dimensional sound field is

px{xsy,t)
O py(X7y7t) 19
o ve(xa e ) 19
vy Cxs s 8)
Then the AWP matrix becomes
- 5 .
3 0 el 0
0 5 0o K2
= T Qo
P ox P ox
190 129
L 03, Poy VY g

It can be seen from Eqgs. (19) and (20) that the im-
plementation of two-dimensional PM L-AWP will be
the same as that of one-dimensional case. However,
the split forms of pressure and velocity make the
AWP matrix lose its symmetry, which results in
some difficulties of the calculation. In addition, the
split version of the PML equations admits instability
waves which, if not suppressed by numerical dissipa-
tion or other means, could ruin the numerical solu-
tiol . Detailed analysis of the higher-dimensional
AWP combined with a PM L. medium is ongoing and
will be addressed in the following paper.

2.2  Implementation of the PML boundary for the
acoustical wave propagator

The PM L technique assumes a certain thickness
of an artificial absorbing medium at the two ends of
one-dimensional duct. As shown in Fig. 1, the com-
putational domain with an interior region and the
PM L boundary regions is constructed by defining the
PML with w samples length.

w samples w samples
—t— ~ ——
¢ \ Source pulse
.'|‘.—>
B
0 n, N X

| | |

PML region Interior region PML region

Fig. 1. Geometry of the AWP gnid with the PM L boundary re-

gions.

For the left and right ends of the PM L regions,
dincreases from zero to q

max

smoothly from the inner to

the outer boundary. For the left end region in Fig. 1,

1Y
. Clw— i . .
i) = Qe ‘ ” s =0, -y w—1
QD
and for the right end region in Fig. 1,
1Y
Xid= 8. N—w—i ,
w

where w and N are the length of the PM L layers and
the number of the AWP grid, respectively, Q. is
the maximum damping coefficient at the outer bound-
ary and 7 is the order of the polynomial grading.
However, for the interior region, to simulate a loss-
less acoustic medium, the damping coefficient is set to
zero as

Xi)=0  i=w,wt1l - N—w (23)
It should be noted here that 9, is determined by the
reduction of acoustical wave propagation at a distance
of A which will be discussed and optimized in the
follow ing section.

3 Simulation results

In this section, several illustrating examples for
the combination of AWP with PML are presented.
The one-dimensional acoustic wave propagation is ini-
tialized by a Gaussian wave packet as

7(rx )2

p(x,00=e (24)
) 7(ﬁx0)2

v(x,0)= 0c® a (25)

where x, is the initial position of the incident Gaus-
sian wave packet and a is the width coefficient of this
packet. In the following simulations, the computa-
tional dom ain of length 20 m is chosen which is locat-
ed in [ O m, 20 m]. The density of airis 6=1.21 kg/
m’ and the velocity of sound is ¢=344 m/s. The ini-
tial Gaussian wave packet is centered at the position
of xo= 15 m and the number of the total grid points
is N=1024. The maximum damping coefficient Q,
will be selected after some computational efforts of es-
timating global error.

For the conveniences of the discussion, a global
normalized error function over the computational do-
main is defined as

J ’ lpo(xs T Pdx

Error(T) = 10log10| T, .
J | po(x,0) Pdx

1

(26)
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where T is the total transmission time of Gaussian
wave packet, p.(x, T) represents the spurious re-

flected wave in the computational domain caused by
the computational boundary. po(x, 0) denotes the
initial Gaussian wave packet.

Fig. 2 compares the global errors derived from
the proposed PM I-AWP with that from the original
AWP with smoothing truncated windows at different
absorbing boundary points. The maximum dam ping
coefficient ( ,,,=0.8) and the order of the polyno-
mial grading ( Y=12) are used in this simulation prob-
lem. As shown in Fig. 2, the advantage of the PML-
AWP technique over original AWP with smoothing
truncated windows is obvious. For the absorbing
boundary layer with less than 11 points, the PML-
AWP scheme achieves more than 20 dB decrease of
the global normalized error.

—e— Gaussian smoothing truncation windows
—&— PML technique

Global normalized error function (dB)
by
(=)

0 2 4 6 8 10 12
Number of absorbing boundary layer points

Fig. 2. Global nomalized error of the proposed PM L-AWP and
the original AWP with smoothing truncated windows.

The following simulations are aimed to investi-
gate the influence of the maximum damping coeffi-
cient Q. and the order of the polynomial grading ¥
on the global error. The number of the PM L points
w equals 8.

It can be seen from Fig. 3 and Fig. 4 that prop-
er configurations of the PML-AWP will greatly de-
crease the global error. If Q. or ¥ is small, reflec-
tions from the PM L extemal boundary will greatly in-
fluence the performance of the AWP algorithm, and
the PM L layers cannot provide satifactory absorption
of the transmitted wave. On the other hand, abrupt
changes of the acoustical parameters are inevitable if

Guax 0T Y is too large, and the AWP algorithm will

Gibbs phe-

. In these simulations, we suggest 0. 4<<

suffer from the

[2]
nomenon

error caused by

Oax=<0. 8 and 1< Y<<4 for higher computational ac-

curacy, minimum global error as well as numerical
stability for the PML-AWP technique with eight-
point boundary layer.

Global normalized error function (dB)

-9 e N
0.2 03 04 0506 0.7 0.8 09 1.0 1.1 1.2
Maximum damping coefficient

Fig. 3. Gbbal nomalized error versus the variation of the maxi-
mum damping coefficient.
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Gbbal normalized error versus the varation of the order

4 Conclusions

In this paper, to reduce the spurious reflection
caused by the computational boundary in the imple-
mentation of AWP, a regulated AWP matrix is de-
duced for the combination of PML with one-dimen-
sional AWP. Several numerical simulations are carried
out to verify the efficiency of the proposed scheme.
The results demonstrate that, after proper selection of
the parameters for the PM L-AWP, higher computa-
tional accuracy is achieved and few er points of the ab-
sotbing boundary are needed when comparing the o-
riginal AWP with smoothing truncated windows. In
addition some efforts are also made to optimize the
relevant parameters of the proposed scheme. Howev-
er, difficulties remain in extending this scheme to
two-dimensional and three-dimensional cases. Re-
search aiming at dissolving these problems has been
carried out.
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